(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(c(n, x)) → c(f(g(c(n, x))), f(h(c(n, x))))
g(c(0, x)) → x
h(c(1, x)) → x
Rewrite Strategy: INNERMOST
 
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(c(z0, z1)) → c(f(g(c(z0, z1))), f(h(c(z0, z1))))
g(c(0, z0)) → z0
h(c(1, z0)) → z0
Tuples:
F(c(z0, z1)) → c1(F(g(c(z0, z1))), G(c(z0, z1)), F(h(c(z0, z1))), H(c(z0, z1)))
S tuples:
F(c(z0, z1)) → c1(F(g(c(z0, z1))), G(c(z0, z1)), F(h(c(z0, z1))), H(c(z0, z1)))
K tuples:none
Defined Rule Symbols:
 
f, g, h
Defined Pair Symbols:
 
F
Compound Symbols:
 
c1
 
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace 
F(
c(
z0, 
z1)) → 
c1(
F(
g(
c(
z0, 
z1))), 
G(
c(
z0, 
z1)), 
F(
h(
c(
z0, 
z1))), 
H(
c(
z0, 
z1))) by 
F(c(0, z0)) → c1(F(z0), G(c(0, z0)), F(h(c(0, z0))), H(c(0, z0)))
F(c(x0, x1)) → c1(F(h(c(x0, x1))))
 
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(c(z0, z1)) → c(f(g(c(z0, z1))), f(h(c(z0, z1))))
g(c(0, z0)) → z0
h(c(1, z0)) → z0
Tuples:
F(c(0, z0)) → c1(F(z0), G(c(0, z0)), F(h(c(0, z0))), H(c(0, z0)))
F(c(x0, x1)) → c1(F(h(c(x0, x1))))
S tuples:
F(c(0, z0)) → c1(F(z0), G(c(0, z0)), F(h(c(0, z0))), H(c(0, z0)))
F(c(x0, x1)) → c1(F(h(c(x0, x1))))
K tuples:none
Defined Rule Symbols:
 
f, g, h
Defined Pair Symbols:
 
F
Compound Symbols:
 
c1, c1
 
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace 
F(
c(
0, 
z0)) → 
c1(
F(
z0), 
G(
c(
0, 
z0)), 
F(
h(
c(
0, 
z0))), 
H(
c(
0, 
z0))) by 
F(c(0, x0)) → c1(F(x0))
 
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(c(z0, z1)) → c(f(g(c(z0, z1))), f(h(c(z0, z1))))
g(c(0, z0)) → z0
h(c(1, z0)) → z0
Tuples:
F(c(x0, x1)) → c1(F(h(c(x0, x1))))
F(c(0, x0)) → c1(F(x0))
S tuples:
F(c(x0, x1)) → c1(F(h(c(x0, x1))))
F(c(0, x0)) → c1(F(x0))
K tuples:none
Defined Rule Symbols:
 
f, g, h
Defined Pair Symbols:
 
F
Compound Symbols:
 
c1
 
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(c(0, x0)) → c1(F(x0))
We considered the (Usable) Rules:
h(c(1, z0)) → z0
And the Tuples:
F(c(x0, x1)) → c1(F(h(c(x0, x1))))
F(c(0, x0)) → c1(F(x0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [5]   
POL(1) = 0   
POL(F(x1)) = [2]x1   
POL(c(x1, x2)) = [1] + x2   
POL(c1(x1)) = x1   
POL(h(x1)) = x1   
 
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(c(z0, z1)) → c(f(g(c(z0, z1))), f(h(c(z0, z1))))
g(c(0, z0)) → z0
h(c(1, z0)) → z0
Tuples:
F(c(x0, x1)) → c1(F(h(c(x0, x1))))
F(c(0, x0)) → c1(F(x0))
S tuples:
F(c(x0, x1)) → c1(F(h(c(x0, x1))))
K tuples:
F(c(0, x0)) → c1(F(x0))
Defined Rule Symbols:
 
f, g, h
Defined Pair Symbols:
 
F
Compound Symbols:
 
c1
 
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace 
F(
c(
x0, 
x1)) → 
c1(
F(
h(
c(
x0, 
x1)))) by 
F(c(1, z0)) → c1(F(z0))
F(c(x0, x1)) → c1
 
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(c(z0, z1)) → c(f(g(c(z0, z1))), f(h(c(z0, z1))))
g(c(0, z0)) → z0
h(c(1, z0)) → z0
Tuples:
F(c(0, x0)) → c1(F(x0))
F(c(1, z0)) → c1(F(z0))
F(c(x0, x1)) → c1
S tuples:
F(c(1, z0)) → c1(F(z0))
F(c(x0, x1)) → c1
K tuples:
F(c(0, x0)) → c1(F(x0))
Defined Rule Symbols:
 
f, g, h
Defined Pair Symbols:
 
F
Compound Symbols:
 
c1, c1
 
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(c(x0, x1)) → c1
 
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(c(z0, z1)) → c(f(g(c(z0, z1))), f(h(c(z0, z1))))
g(c(0, z0)) → z0
h(c(1, z0)) → z0
Tuples:
F(c(0, x0)) → c1(F(x0))
F(c(1, z0)) → c1(F(z0))
S tuples:
F(c(1, z0)) → c1(F(z0))
K tuples:
F(c(0, x0)) → c1(F(x0))
Defined Rule Symbols:
 
f, g, h
Defined Pair Symbols:
 
F
Compound Symbols:
 
c1
 
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(c(1, z0)) → c1(F(z0))
We considered the (Usable) Rules:none
And the Tuples:
F(c(0, x0)) → c1(F(x0))
F(c(1, z0)) → c1(F(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0   
POL(1) = [1]   
POL(F(x1)) = x12   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
 
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(c(z0, z1)) → c(f(g(c(z0, z1))), f(h(c(z0, z1))))
g(c(0, z0)) → z0
h(c(1, z0)) → z0
Tuples:
F(c(0, x0)) → c1(F(x0))
F(c(1, z0)) → c1(F(z0))
S tuples:none
K tuples:
F(c(0, x0)) → c1(F(x0))
F(c(1, z0)) → c1(F(z0))
Defined Rule Symbols:
 
f, g, h
Defined Pair Symbols:
 
F
Compound Symbols:
 
c1
 
(15) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(16) BOUNDS(O(1), O(1))